ERC Advanced Grant for Professor Martin Möller

07/04/2016

Professor Dr. Martin Möller from the DWI - Leibniz Institute for Interactive Materials and the RWTH Aachen University receives an Advanced Grant from the European Research Council. The European Research Council uses its Advanced Grants to financially support outstanding, well-established scientists with up to 2.5 Million Euro and thereby allows them to pursue groundbreaking high-risk research in Europe. Martin Möller will apply this grant to develop gel-based micro-engines for future applications in biomedicine.

 

The European Research Council uses its Advanced Grants to financially support outstanding, well-established scientists with up to 2.5 Million Euro and thereby allows them to pursue groundbreaking high-risk research in Europe. 

Martin Möller will apply this grant to develop gel-based micro-engines for future applications in biomedicine.Sophisticated micro- and nano-objects, as well as functional materials, are Martin Möller’s expertise. Within his ERC-funded project, he strives to make an important contribution to the development of gel-based, light-triggered micro-engines, which could be used to develop new self-actuating materials. These materials may be implemented to biomechanically stimulate cells and tissues in biological and medical applications. In addition, the project will be a starting point for the development of gel-based microfluidic pumps and self-actuating swimmers and transporters. For this purpose, Martin Möller and his team of polymer chemists use hydrogels, which contains 80 to 98 percent water. By uptake and release of this water, these hydrogels can significantly change their shape. By using infrared light pulses, Martin Möller and his colleagues were already able to induce transient shape deformations in the gels, leading to fast moving gel architectures with a rate up to 2000 micrometers per second. Within the ERC, Möller aims to obtain fast motion under continuous IR-irradiation by the development of a self-oscillating system with iterative pulsation.